Discussion. In $\mathrm{Zn}\left(\right.$ dotaH $\left._{2}\right)$ (Fig. 2) the metal ion is surrounded by the four nitrogens of the macrocycle and by two carboxylate oxygens, so that a distorted cis-octahedral geometry results. The two nitrogens $\mathrm{N}(2)$ and $\mathrm{N}(2)^{\prime}$ (trans to each other in the macrocycle) and the two oxygens $O(1)$ and $O(1)^{\prime}$ stemming from the acetate groups attached at $\mathrm{N}(2)$ and $\mathrm{N}(2)^{\prime}$ form a plane in which the metal ion is also situated. The other two nitrogens $\mathrm{N}(1)$ and $\mathrm{N}(1)^{\prime}$ are axially coordinated and complete the octahedron. The macrocycle is folded along the $\mathrm{N}(1)-\mathrm{N}(1)^{\prime}$ axis and assumes the cis-I configuration (Bosnich, Poon \& Tobe, 1965). The Zn^{2+} is situated on the C_{2} axis which bisects the $\mathrm{O}(1)-\mathrm{Zn}-\mathrm{O}(1)^{\prime}$ angle. The other two carboxylates are protonated and not involved in coordination. They form hydrogen bonds $\mathrm{O}(4)$ $\mathrm{H}(13) \cdots \mathrm{O}(2)$ to a second molecule, the $\mathrm{O}(4)-\mathrm{O}(2)$ distance being $2.62(8) \AA$ and the $\mathrm{O}-\mathrm{H}-\mathrm{O}$ angle $162(5)^{\circ}$. The $\mathrm{Zn}-\mathrm{N}$ and $\mathrm{Zn}-\mathrm{O}$ bonds are somewhat longer than those of the corresponding Ni^{2+} complex (Riesen, Zehnder \& Kaden, 1986), but the angles are similar. The $\mathrm{N}(1)-M-\mathrm{N}(1)^{\prime}$ angle is 153.9° for $M=\mathrm{Zn}^{2+}$, compared to 153.9 and 158.6° for Ni^{2+} and Cu^{2+}, respectively, and is distinctly smaller than that expected for the octahedron $\left(180^{\circ}\right)$. This is due to the strain inherent in the 12 -membered macrocycle, which does not allow the nitrogens to occupy the ideal position.

The structure of $\left.\mathrm{Zn}(\operatorname{tetaH})_{2}\right) \cdot 4 \mathrm{H}_{2} \mathrm{O}$, shown in Fig. 3 , indicates that the metal ion in a trans-octahedral arrangement of the four amino nitrogens of the macrocycle and two carboxylate oxygens. Since the Zn^{2+} sits on an inversion centre it is in the plane defined by the four nitrogens with $\mathrm{Zn}-\mathrm{N}$ bond
lengths of 2.110 and $2.253 \AA$. The $\mathrm{Zn}-\mathrm{O}$ bonds are $2 \cdot 127 \AA$ long, so that the octahedron is somewhat elongated along the $\mathrm{N}(2)-\mathrm{Zn}-\mathrm{N}(2)$ axis. This is in contrast to the geometry found for the $\mathrm{Cu}(\text { teta })^{2-}$ species (Riesen, Zehnder \& Kaden, 1988), which is elongated along the $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ axis. The angles around the Zn^{2+} are close to 90°, the $\mathrm{O}(1)-\mathrm{Zn}-$ $\mathrm{N}(1)$ angle being the smallest at $80 \cdot 9^{\circ}$. The macrocycle is in the trans-III configuration according to the nomenclature of Bosnich, Poon \& Tobe (1965). The two carboxylates not involved in coordination are protonated and form hydrogen bonds, from $\mathrm{O}(3)$ $\mathrm{H}(15)$ to $\mathrm{O} W(1)^{\prime}$, which itself forms hydrogen bonds to $\mathrm{O}(2)$ and $\mathrm{O} W(2)^{\prime}$. This last water is also hydrogen bonded to $\mathrm{O}(1)$. The $\mathrm{O}-\mathrm{O}$ distances range from $2 \cdot 61$ to $2.78 \AA$ with $\mathrm{O}-\mathrm{H}-\mathrm{O}$ angles from 161 to 177°.

Support of this study by the Swiss National Science Foundation (Project No. 20.5372.87) is gratefully acknowledged.

References

Bosnich, B., Poon, C. K. \& Tobe, M. L. (1965). Inorg. Chem. 4, 1102-1108.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Johnson, C. K. (1971). ORTEPII. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Riesen, A., Zehnder, M. \& Kaden, Th. A. (1985). J. Chem. Soc. Chem. Commun. pp. 1336-1338.
Riesen, A., Zehnder, M. \& Kaden, Th. A. (1986). Helv. Chim. Acta, 69, 2067-2073, 2074-2080.
Riesen, A., Zehnder, M. \& Kaden, Th. A. (1988). Acta Cryst. C44, 1740-1742.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Federal Republic of Germany.

Acta Cryst. (1991). C47, 533-536

Structure of a Monocyclopentadienyl Niobium(III) Phosphine Adduct

By Abdenasser Zaki and Liliane G. Hubert-Pfalzgraf*
Laboratoire de Chimie Moléculaire, Associé au CNRS, Université de Nice, Parc Valrose, 06034 Nice, France
and Loic Toupet
Laboratoire de Cristallochimie, Associé au CNRS, Campus de Beaulieu, 35042 Rennes, France

(Received 28 February 1990; accepted 3 September 1990)

Abstract

Dichloro (η^{5}-cyclopentadienyl)tris(trimethylphosphine)niobium(III), $\quad\left[\mathrm{NbCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ -

^[* To whom correspondence should be addressed.]

0108-2701/91/030533-04\$03.00
$\left.\left\{\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{3}\right], \quad M_{r}=457 \cdot 15$, monoclinic, $P 2_{1} / n, a=$ 18.900 (9), $\quad b=12.696$ (7), $\quad c=18.820$ (8) $\AA, \quad \beta=$ $113 \cdot 11(4)^{\circ}, V=4153 \AA^{3}, Z=8, D_{x}=1.462 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Мо $K \alpha)=0.71073 \AA, \quad \mu=10.3 \mathrm{~cm}^{-1}, \quad F(000)=$

1888, room temperature, $R=0.036$ for 2617 observations. The structure exhibits a pseudo-octahedral environment for the metal, with the chlorine in a cis position. Two crystallographically independent molecules having comparable interatomic distances are found in the unit cell. The crystals were obtained by reduction of CpNbCl_{4} with two equivalents of sodium amalgam in toluene in the presence of the phosphine ligand.

Introduction. The chemistry of the monocyclo-pentadienyl-derivative complexes of the Group V elements, niobium and tantalum has received little attention compared with their bis(cyclopentadienyl) counterparts. Low-valency monocyclopentadienyl derivatives stabilized by ligands such as phosphine could be convenient precursors, but knowledge of their structure remains limited. The reduction of ($\eta^{5}-\mathrm{Cp}$) NbCl_{4} with two equivalents of sodium amalgam in the presence of excess PMe_{3} afforded crystals of a diamagnetic compound, analysed as $\left(\eta^{5}-\mathrm{Cp}\right) \mathrm{NbCl}_{2}\left(\mathrm{PMe}_{3}\right)_{3}$. The synthesis of this niobium(III) compound by an alternative route has been reported recently (Alt \& Engelhardt, 1989) and thus prompts us to report its X-ray structural determination. X-ray characterization has been carried out, since several structures, three molecular complexes ($1 a$), ($1 b$) and ($1 c$), which differ in the geometrical distribution of the chlorine and phosphine ligands, as well as an ionic four-legged piano-stool isomer (1d), must be considered.

Experimental. Synthesis. $\mathrm{CpNbCl}_{4} \quad(0.98 \mathrm{~g}$, 3.32 mmol) was allowed to react with sodium amalgam ($0.15 \mathrm{Na} / 0.8 \mathrm{ml} \mathrm{Hg}$) in 5 ml toluene in the presence of $\mathrm{PMe}_{3}(1.7 \mathrm{ml}, 15 \mathrm{mmol})$. After 6 h of reaction time, filtration over a celite pad was achieved. The brown-red filtrate was concentrated to about 25 ml . Crystallization at 243 K gave red

Table 1. Summary of crystallographic data for $\left(\eta^{5}-\mathrm{Cp}\right) \mathrm{NbCl}_{2}\left(\mathrm{PMe}_{3}\right)_{3}$
Compound
Colour
Molecular weight
Crystal system
Space group
$a(\AA)$
$b(\AA)$
$c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Density (calc.) $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$
Crystal dimensions (mm)
$F 000)$
Diffractometer
Radiation
Linear absorption coefficient $\left(\mathrm{cm}^{-1}\right)$
Scan type
$h k l$ limits
Data collected
Unique data used $\left[F_{o}^{2}>4 \sigma\left(F_{o}^{2}\right)\right]$
$R_{\text {int }}$
Number of parameters refined
R
$w R$
S

crystals $(1.5 \mathrm{~g}, 59 \%)$, slightly soluble in toluene, more soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, while decomposition occurred in CHCl_{3}. Analysis: Calculated for $\mathrm{C}_{14} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{NbP}_{3}: \mathrm{C}: 36.76 ; \mathrm{H}: 7.06 ; \mathrm{Cl}: 15.54 ; \mathrm{P}:$ 20.35. Found: C: $33 \cdot 63$; H: 6.21; Cl: 15.90 ; P: 17.50.

The monocrystal was introduced under argon into a sealed Lindemann capillary and mounted on an automatic diffractometer. The cell parameters were obtained by fitting a set of 25 high $-\theta$ reflections. The crystal parameters and basic information on data collection and structure refinement are shown in Table 1. The data collection [$2 \theta_{\text {max }}=50^{\circ}$, scan $\omega / 2 \theta$ $=1, t_{\text {max }}=60 \mathrm{~s}$, intensity controls without appreciable decay (0.4%)] gave 7460 reflections of which 2617 were independent ($R_{\text {int }}=0.024$) with $I>4 \sigma(I)$.

After Lorentz and polarization corrections the structure was solved with a Patterson map which revealed the two Nb atoms. The remaining non -H atoms were found after a scale-factor refinement and a Fourier difference map. After isotropic ($R=0.09$) refinement, an absorption correction with DIFABS (Walker \& Stuart, 1983) was made. $T_{\max }=1 \cdot 26, T_{\min }$ $=0.82$. After an anisotropic ($R=0.056$) refinement of all the non-H atoms, many H atoms were located by a Fourier difference map, the remainder being set in calculated positions. The whole structure was refined by the full-matrix least-squares technique \{use of F magnitudes; $x, y, z, \beta_{i j}$ for $\mathrm{Nb}, \mathrm{Cl}, \mathrm{P}$ and C atoms, x, y, z fixed for H atoms, 1589 observations; $\left.w=\left[\sigma^{2}(I)+\left(0.04 F_{o}^{2}\right)^{2}\right]^{-1 / 2}\right\}$ with the resulting $R=$ $0.037, \quad w R=0.036 \quad$ and $\quad S=1.09 \quad$ (residual $\left.0.34 \mathrm{e} \AA^{-3}\right) . \quad(\Delta / \sigma)_{\max }=0.265$. Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV). All calculations were performed on a Digital PDP 11/60 computer with the SDP package (Frenz, 1985). Final positional param-

Table 2. Positional and thermal parameters for $\left(\eta^{5}-\mathrm{Cp}\right) \mathrm{NbCl}_{2}\left(\mathrm{PMe}_{3}\right)_{3}$

	x	y	z	$B\left(\AA^{2}\right)$
Nbl	0.76128 (5)	$0 \cdot 16777$ (7)	0.63430 (5)	2.40 (2)
Nbll	0.36200 (4)	0.23942 (6)	0.73056 (4)	2.57 (2)
Cl 1	0.8249 (1)	0.3449 (2)	0.6689 (1)	3.73 (6)
Cl 2	0.6681 (1)	0.2640 (2)	0.6845 (1)	3.99 (6)
Cl11	0.3158 (1)	0.0654 (2)	0.6629 (1)	3.47 (6)
Cl12	0.3052 (1)	0.1531 (2)	0.8211 (1)	4.46 (6)
P1	0.8830 (2)	0.1590 (2)	0.6020 (2)	3.91 (6)
P2	0.6866 (2)	0.2747 (2)	0.5062 (2)	3.56 (6)
P3	0.8379 (1)	$0 \cdot 1418$ (2)	0.7844 (1)	2.98 (6)
P11	0.3918 (1)	0.2397 (2)	0.6067 (1)	$3 \cdot 18$ (6)
P12	0.4821 (2)	$0 \cdot 1161$ (2)	0.8047 (2)	$4 \cdot 21$ (7)
P13	0.2149 (1)	0.2837 (2)	0.6521 (1)	$3 \cdot 33$ (6)
Cl	0.7789 (7)	-0.0133 (8)	0.6219 (6)	$4 \cdot 8$ (3)
C2	0.7307 (7)	0.0309 (8)	0.5503 (6)	$4 \cdot 8$ (3)
C3	0.6614 (6)	0.0587 (9)	0.5571 (7)	$5 \cdot 1$ (3)
C4	0.6680 (6)	0.0325 (8)	0.6327 (7)	4.4 (3)
C5	0.7382 (6)	-0.0101 (8)	0.6712 (6)	$4 \cdot 5$ (3)
C6	0.7780 (7)	0.116 (1)	$0 \cdot 8382$ (6)	$5 \cdot 4$ (3)
C7	0.8922 (6)	0.2541 (9)	0.8395 (6)	4.4 (3)
C8	0.9092 (6)	0.0366 (9)	0.8215 (6)	4.8 (3)
C9	0.9751 (6)	0.161 (1)	0.6840 (7)	$6 \cdot 2$ (3)
C10	0.9003 (7)	0.047 (1)	0.5504 (8)	$7 \cdot 7$ (4)
Cl 1	0.8989 (6)	0.264 (1)	0.5427 (6)	5.4 (3)
C12	0.7228 (7)	0.3996 (9)	0.4892 (7)	$5 \cdot 6$ (3)
C13	0.6667 (9)	0.214 (1)	0.4138 (7)	7.4 (4)
C14	0.5895 (7)	0.315 (1)	0.4940 (7)	6.4 (4)
C21	0.3880 (6)	0.4166 (8)	0.7174 (6)	$4 \cdot 3$ (3)
C22	0.4564 (6)	0.3655 (8)	0.7618 (6)	$4 \cdot 3$ (3)
C23	0.4481 (6)	0.3397 (9)	0.8342 (6)	$4 \cdot 5$ (3)
C24	0.3767 (7)	0.3737 (9)	0.8281 (6)	$5 \cdot 0$ (3)
C25	0.3392 (6)	0.4224 (8)	0.7588 (6)	$5 \cdot 2$ (3)
C26	0.1612 (6)	0.319 (1)	0.7097 (7)	$6 \cdot 1$ (3)
C27	$0 \cdot 1540$ (5)	0.1782 (9)	0.5946 (7)	$5 \cdot 1$ (3)
C28	$0 \cdot 1865$ (7)	0.3925 (9)	0.5836 (7)	5.4 (3)
C29	0.3099 (6)	$0 \cdot 2280$ (9)	0.5165 (5)	4.4 (3)
C30	0.4396 (6)	0.3501 (9)	0.5822 (6)	$4 \cdot 9$ (3)
C31	0.4514 (6)	0.1354 (9)	0.5937 (6)	$5 \cdot 3$ (3)
C32	$0 \cdot 4907$ (6)	-0.011 (1)	0.7637 (7)	$5 \cdot 9$ (3)

Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $(4 / 3)\left[a^{2} B(1,1)+b^{2} B(2,2)+\right.$ $\left.c^{2} B(3,3)+a b(\cos \gamma) B(1,2)+a c(\cos \beta) B(1,3)+b c(\cos \alpha) B(2,3)\right]$.
eters and isotropic thermal parameters are listed in Table 2.*

Discussion. Crystals of ($\left.\eta^{5}-\mathrm{Cp}\right) \mathrm{NbCl}_{2}\left(\mathrm{PMe}_{3}\right)_{3}$ suitable for X-ray analysis were grown from the reaction medium resulting from the reduction of $\left(\eta^{5}\right.$ $\mathrm{Cp}) \mathrm{NbCl}_{4}$ with sodium amalgam in toluene in the presence of an excess of PMe_{3}. The atom labelling is defined in Fig. 1, which represents one of the two crystallographically independent molecules found in the asymmetric unit cell. Selected bond distances and angles for these two slightly different molecules are collected in Table 3. The coordination sphere of this 18-electron complex may be described as a distorted octahedron with the Cl atoms in cis positions. The structure in the solid state thus corresponds to isomer (lb). The $\mathrm{Nb}-\mathrm{Cl}$ bond lengths $[2.513$ (3) to $2 \cdot 607$ (3) \AA] are quite long, even for trivalent niobium, the longest terminal $\mathrm{Nb}-\mathrm{Cl}$ bond reported so

[^1]Table 3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of $\left(\eta^{5}-\mathrm{Cp}\right) \mathrm{NbCl}_{2}\left(\mathrm{PMe}_{3}\right)_{3}$

$\mathrm{NbI}-\mathrm{Cll}$	
$\begin{aligned} & \mathrm{NbI}-\mathrm{Cll} \\ & \mathrm{NbI}-\mathrm{Cl} 2 \end{aligned}$	
	Nbl-Pl
	Nbl-P2
	Nbl-P3
	$\mathrm{Nb1}-\mathrm{Cl}$
	$\mathrm{Nb} 1-\mathrm{C} 2$
	Nb1-C3
	$\mathrm{Nb}-\mathrm{C} 4$
	Nbl-C5
$\mathrm{Cl} 1-\mathrm{Nbl}$	
$\mathrm{Cl}-\mathrm{Nbl}$	
$\mathrm{Cl} 1-\mathrm{Nbl}$	
	$\mathrm{Cll}-\mathrm{Nb}$
$\mathrm{Cl} 2-\mathrm{Nb}$	
$\mathrm{Cl} 2-\mathrm{Nbl}$	
$\mathrm{Cl} 2-\mathrm{Nb} 1$	
$\mathrm{Pl}-\mathrm{Nbl}$	
$\mathrm{Pl}-\mathrm{Nbl}$	
	$\mathrm{P} 2-\mathrm{NbI}$

Fig. 1. ORTEP drawing of $\left(\eta^{5}-\mathrm{Cp}\right) \mathrm{NbCl}_{2}\left(\mathrm{PMe}_{3}\right)_{3}$ showing the atom-labelling scheme.
far being $2 \cdot 505$ (4) \AA (Aspinall, Robert \& Lippard, 1984; Cotton, Duraj \& Roth, 1984). The $\mathrm{Nb}-\mathrm{Cl}(2)$ distance is especially long, probably as a result of some trans effect exerted by the $\mathrm{PMe}_{3}(\mathrm{P} 1)$ ligand for which the $\mathrm{Nb}-\mathrm{P}$ bond length is also the shortest. The mean $\mathrm{Nb}-\mathrm{C}(\mathrm{Cp})$ bond distance for the two molecules is $2.37 \AA$ and is thus in agreement with data reported in the literature for either mono- or biscyclopentadienyl derivatives (Holloway \& Melnik, 1986); however, large variations in these $\mathrm{Nb}-\mathrm{C}$ distances [2.266 (11) to 2.458 (11) \AA] were observed. An examination of the $\mathrm{C}-\mathrm{C}$ bond distances also reveals a spread $[1.350(14)-1 \cdot 42$ (2) \AA] consistent with a distorted η^{5}-coordination mode of the cyclopentadienyl moiety. As for $\left(\eta^{5}-\mathrm{Cp}\right) \mathrm{Ta}\left(\eta^{2} \mathrm{C}_{2} \mathrm{H}_{4}\right)$ $\mathrm{Cl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ (Atwood, Honan \& Rogers, 1982), steric problems appear to be the likely origin of this
distortion. Steric congestion around the metal is also evidenced by the small $\mathrm{Cl}(1)-\mathrm{Nb}-\mathrm{Cl}(2)$ and $\mathrm{Cl}(1)-\mathrm{Nb}-\mathrm{P}(1)$ angles (79 and $73 \cdot 8^{\circ}$, respectively). The $\mathrm{Nb}-\mathrm{PMe}_{3}$ distances are of two types depending on the ligand in the trans position; they are shorter than those observed in $\mathrm{Nb}_{4} \mathrm{Cl}_{10}\left(\mathrm{PMe}_{3}\right)_{6}$ (Cotton \& Shang, 1988), one of the few niobium-phosphine adducts structurally characterized. The lability of the phosphine ligand and/or metathesis reactions opens synthetic routes to other monocyclopentadienyl derivatives.

References

Alt, H. G. \& Engelhardt, H. G. (1989). Z. Naturforsch. Teil B, 44, 367-368.

Aspinali, H. C., Robert, M. M. \& Lippard, S. J. (1984). Inorg. Chem. 23, 1782-1784.
Atwood, J. L., Honan, M. B. \& Rogers, R. D. (1982). J. Cryst. Spectrosc. Res. 12, 205-221.
Cotton, F. A., Duraj, S. A. \& Roth, W. J. (1984). J. Am. Chem. Soc. 106, 6987-6993.
Cotton, F. A. \& Shang, M. (1988). J. Am. Chem. Soc. 110, 7719-7722.
Curtis, M. D., Real, J. \& Kwon, D. (1989). Organometallics, 8, 1644-1651.
Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
Holloway, C. E. \& Melnik, M. (1986). J. Organomet. Chem. 303, 1-38.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1991). C47, 536-539

Tricarbonyl[(1,2,3,4- $\boldsymbol{\eta})$-2,3-dimethylbutadiene]cobalt Acetonitriletrichloroferrate(1-)

By Stuart A. Macgregor, Lesley J. Yellowlees and Alan J. Welch
Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, Scotland

(Received 21 June 1990; accepted 28 August 1990)

Abstract

Co}\left(\mathrm{C}_{6} \mathrm{H}_{10}\right)(\mathrm{CO})_{3}\right]\left[\mathrm{Fe}(\mathrm{Cl})_{3}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)\right], \quad M_{r}=\) 428.35, monoclinic, $P 2_{1} / a, a=11.259$ (10), $b=$ 12.043 (4), $\quad c=12.727$ (7) $\AA, \quad \beta=97.53$ (6$)^{\circ}, \quad V=$ $1710 \cdot 8 \AA^{3}, Z=4, D_{x}=1.663 \mathrm{Mg} \mathrm{m}^{-3}$, Мо $K \alpha, \lambda=$ $0.71069 \AA, \quad \mu=2.291 \mathrm{~mm}^{-1}, \quad F(000)=856, \quad T=$ 291 (1) K, $R=0.032$ for 1383 independent observed reflections. The title compound, an archetypal Co^{1} species, was studied in the hope of gaining further information about $\left[7,7,7-(\mathrm{CO})_{3}-7-\mathrm{CoB}_{10} \mathrm{H}_{12}\right]^{-}$, which had previously been described formally as a $\mathrm{Co}^{1 I I}$ complex. Comparison of $\mathrm{Co}-\mathrm{CO}$ distances and C-O IR stretching frequencies lends support to this conclusion.

Introduction. Recently (Macgregor, Yellowlees \& Welch, 1990) we reported that analysis of the structure of the anion $\left[7,7,7-(\mathrm{CO})_{3}-7-\mathrm{CoB}_{10} \mathrm{H}_{12}\right]^{-}$(1) implied that the $\left\{\mathrm{B}_{10} \mathrm{H}_{12}\right\}$ moiety in this species could best be described as the arachno fragment $\left\{\mathrm{B}_{10} \mathrm{H}_{12}\right\}^{4-}$, and therefore that the formal oxidation state of the Co atom was +3 .

In an attempt to gain further information on this system we describe here the results of a structural study of the cation $\left[(\mathrm{CO})_{3} \mathrm{Co}(\mathrm{dmbd})\right]^{+}(2)[\mathrm{dmbd}=$ 2,3-dimethylbutadiene, $\left.\quad \eta-\mathrm{CH}_{2} \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me}) \mathrm{CH}_{2}\right]$. This species has been selected for comparison with the cobaltaborane anion since (i) it contains a
directly analogous metal coordination sphere (a tricarbonyl unit and an acyclic η^{4}-bonded ligand) and (ii) the oxidation state of cobalt in the title compound is clearly known $(+1)$. Spectroscopic evidence for the cation $\left[(\mathrm{CO})_{3} \mathrm{Co}(\mathrm{dmbd})\right]^{+}$was first furnished in 1974 (Chauldry \& Paulson, 1974), but no bulk preparation and characterization was carried out. Here we report the isolation of (2) as its $\left[\mathrm{FeCl}_{3}(\mathrm{NCMe})\right]^{-}$salt.

Experimental. Compound prepared as the [$\left.\mathrm{FeCl}_{3}(\mathrm{NCMe})\right]^{-}$salt by oxidation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\left[\mathrm{Co}(\mathrm{CO})_{2}(\mathrm{dmbd})\right]_{2}$ with FeCl_{3}, removal of solvent in vacuo, and extraction of the resultant solid into acetonitrile; identity checked by IR spectroscopy (KBr disc, $\nu_{\mathrm{C}-\mathrm{O}}=2130,2100$ and $2080 \mathrm{~cm}^{-1}$), and established by diffraction study; marine blue crystal, $0.2 \times 0.2 \times 0.3 \mathrm{~mm}$, mounted on an Enraf-Nonius CAD-4 diffractometer (Mo $K \alpha$ radiation, graphite monochromator); cell parameters and orientation matrix from least-squares refinement of the setting angles ($9<\theta<12^{\circ}$) of 25 centred reflections; data collection by $\omega-2 \theta$ scans in 96 steps with ω scan width $(0 \cdot 8+0 \cdot 34 \tan \theta)^{\circ}$; data ($h: 0$ to $10, k$: 0 to $11, l$: - 12 to 12) measured for $1 \leq \theta \leq 20^{\circ}$ over 18 X-ray hours; corrections for Lorentz and polarization effects applied (Gould \& Smith, 1986); 1699 indepen-
(C) 1991 International Union of Crystallography

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters and a full list of bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53536 (15 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

